Name:

Each problem is worth 15 points.

1. Find a function with gradient $\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(1+x^{2}\right) \mathbf{j}$.
2. Find a normal vector to the surface $z=x^{2}+y^{2}$ at the point $(1,1,2)$, and write an equation for the tangent plane at that point.
3. Find the maximum and minimum values of $f(x, y)=x^{2}+x y+y^{2}$ on the disk $x^{2}+y^{2} \leq 1$.
4. If an open rectangular box has prescribed surace area S, what dimensions yield the maximum volume?
5. Find the volume of the solid bounded below by the $x y$-plane and above by the paraboloid $z=1-\left(x^{2}+y^{2}\right)$.
6. Find the volume of the "ice cream cone" region bounded inside the sphere $x^{2}+y^{2}+z^{2}=1$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
7. Find center of mass of half a ball of radius 1, i.e., the region bounded inside the sphere $x^{2}+y^{2}+z^{2}=1$ and above the plane $z=0$.
