Midterm 1

Name:
Each problem is worth 15 points.

1. Write an expression for the angle between the main diagonal of a cube and the diagonal of one of its sides.
2. Find the equation in x, y, z for the plane passing through the points $(1,0,1),(2,1,0)$, $(1,1,1)$.
3. Let $\mathbf{r}(t)$ be the position vector of a moving particle. Show that if $\|\mathbf{r}(t)\|$ is constant, then $\mathbf{r}(t)$ is orthogonal to $\mathbf{r}^{\prime}(t)$.
4. Find the length of the curve $\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+4 t \mathbf{k}$ from $t=0$ to $t=3 \pi$.
5. Find the unit tangent and principal normal of the curve $\mathbf{r}(t)=\left(1,2 t, t^{2}\right)$.
6. Identify and sketch the surface $9 x^{2}+4 y^{2}+36 z^{2}-36=0$.
7. Let f be a smooth function of x and y. Is it possible that

$$
\frac{\partial f}{\partial x}=x+y \quad \text { and } \quad \frac{\partial f}{\partial y}=y-x
$$

