Final

1. Find the angle between the diagonal of a cube and diagonal of one of its sides.
2. Find the maximum and minimum values of $f(x, y)=x^{2}+x y+y^{2}$ on the disk $x^{2}+y^{2} \leq 4$.
3. Determine the maximum value of $f(x, y, x)=(x y z)^{1 / 3}$ given that x, y, z are nonnegative numbers and $x+y+z=k, k$ a constant.
4. Find the volume of the "ice cream cone" region bounded inside the sphere $x^{2}+y^{2}+z^{2}=1$ and above the cone $z=\sqrt{x^{2}+y^{2}}$.
5. Find the volume of the solid bounded below by the $x y$-plane and above by the paraboloid $z=1-\left(x^{2}+y^{2}\right)$.
6. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in two different ways: (i) using change of variables, and (ii) by applying Green's theorem.
7. Find center of mass of a hemisphere of radius 1, i.e., the 2-dimensional surface given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$ (Note: this is not the same as half a ball).
8. An object moves along the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$. One of the forces acting on the object is $\mathbf{F}(x, y):=(x+2 y) \mathbf{i}+(2 x+y) \mathbf{j}$. Calculate the work done by \mathbf{F}.
9. Compute the total flux of the vector field $\mathbf{v}(x, y, z)=\left(x, 2 y^{2}, 3 z^{2}\right)$ out of the solid given by $x^{2}+y^{2} \leq 9,0 \leq z \leq 1$.
10. The sphere $x^{2}+y^{2}+z^{2}=a^{2}$ intersects the plane $x+2 y+z=0$ in a curve C. Calculate the circulation of $\mathbf{v}=2 y \mathbf{i}-z \mathbf{j}+2 x \mathbf{k}$ about C by using Stokes Theorem.
