Time: 105min

MIDTERM

- 1. Compute the volume of a right circular cone with height h and base radius R. (Bonus: do this problem in two different ways: (i) by using Cavlieri's principle, and (ii) by evaluating a double integral.)
- **2.** Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- **3.** Compute the average value of the function $f(x,y) := e^{x^2+y^2}$ over the disk $x^2 + y^2 \le 1$.
- **4.** Evaluate $\int \int_D x \, dA$, and $\int \int_D y \, dA$, where D is the triangle bounded by x = 0, y = 0, and x + y = 1. (**Bonus**: what is the value of these integrals if D is reflected with respect to the y-axis?)
- **5.** Find the center of mass of half a ball of radius R.
- **6.** Compute the length of the helix given by $c(t) := (\cos t, \sin t, t), 0 \le t \le 2\pi$. (**Bonus**: what is the average value of the square of the distance of this curve from the origin?)
- **7.** Compute the total work done by a particle moving along the cubic curve, $c(t) := (t, t^2, t^3), \ 0 \le t \le 1$, inside the vector field F(x, y, z) := (y, x, 2). (**Bonus**: solve this problem in two different ways).
- **8.** Find the total mass of the region inside the sphere $x^2 + y^2 + z^2 = 1$, and above the cone $z = \sqrt{x^2 + y^2}$, if the density is given by $\delta(x, y, z) := \sqrt{x^2 + y^2 + z^2}$.

Each problem is worth 10 points.
The bonuses are worth an extra 5 points each.

 $ext{IAT}_{ ext{FX}} ext{...} ext{} ext$