Time: 180min

FINAL EXAM

- **1.** Evaluate $\int \int_D \sin(x^2 + y^2) dxdy$ where D is the disk $x^2 + y^2 \le \pi$.
- **2.** Compute the volume of an ellipsoid with semiaxes a, b, and c.
- **3.** Find the center of mass of the *ice cream cone* given by $x^2 + y^2 + z^2 \le 1$ and $z \ge \sqrt{x^2 + y^2}$, if the density is $\delta(x, y, z) := \sqrt{x^2 + y^2 + z^2}$.
- **4.** Find the average value of the distance of the *helix* $(\cos t, \sin t, t)$, $0 \le t \le \pi$, from the xz-plane.
- **5.** Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 1$ which lies above the plane $z = \frac{\sqrt{2}}{2}$.
- **6.** Show that the gravitational vectorfield $\mathbf{F} := -\frac{\mathbf{r}}{\|\mathbf{r}\|^3}$ is conservative. What is the total work done by this force in moving a particle from a point \mathbf{r}_0 to a point \mathbf{r}_1 ?
- 7. Compute the area of the region enclosed by the curve $(\cos^3 t, \sin^3 t)$, $0 \le t \le 2\pi$. (*Hint*: use Green's theorem).
- **8.** Show that the volume of any cone with base D and height h is given by $1/3 \operatorname{Area}(D)h$ (Hint: suppose that the vertex of the cone is at the origin and apply Gauss's theorem to the vectorfield $\mathbf{r} := (x, y, z)$).
- **9.** Find $\int \int_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ where S is given by $x^2 + y^2 + (z \frac{1}{2})^2 = 1$, and $z \geq 0$, and $\mathbf{F}(x, y, z) := (x + z, y + z, z^2)$ (*Hint*: use Stokes's theorem).
- **10.** Suppose that rain is described by the vectorfield $\mathbf{F}(x,y,z) = -(1,0,1)$. What is the flux through the hemispherical cup $z = -\sqrt{1-x^2-y^2}$? How long does it take before the cup is filled with water?
- 11 (Bonus). Prove that the there exists a surface which has infinite area but bounds a finite volume.

AT_EX	 	 $\dots \dots \mathcal{M}\mathcal{G}$