Solutions To Midterm 3

1a. This is best done using logarithmic differentiation. First take natural log of both sides:

$$
\begin{aligned}
\ln y & =\ln \frac{\sqrt{x+13}}{(x-4)(\sqrt[3]{2 x+1})} \\
& =\frac{1}{2} \ln (x+3)-\ln (x-4)-\frac{1}{3} \ln (2 x+1)
\end{aligned}
$$

Then differentiate both sides,

$$
\frac{y^{\prime}}{y}=\frac{1}{2(x+3)}-\frac{1}{x-4}-\frac{2}{3(2 x+1)},
$$

and solve for y :

$$
y^{\prime}=\frac{\sqrt{x+13}}{(x-4)(\sqrt[3]{2 x+1})}\left(\frac{1}{2(x+3)}-\frac{1}{x-4}-\frac{2}{3(2 x+1)}\right) .
$$

1b. If $y=\tan ^{-1} x$, then

$$
\tan y=x
$$

Differentiate both sides,

$$
\left(\sec ^{2} y\right) y^{\prime}=1
$$

and solve for y^{\prime}

$$
y^{\prime}=\frac{1}{\sec ^{2} y}
$$

Finally, recal that $\sec ^{2} y=1+\tan ^{2} y$, so

$$
y^{\prime}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}} .
$$

2a. Complete the square:

$$
\int \frac{1}{x^{2}+2 x+10} d x=\int \frac{1}{x^{2}+2 x+1+9} d x=\int \frac{1}{(x+1)^{2}+3^{2}} d x
$$

Let $u=x+1$, then the above integral becomes:

$$
\int \frac{1}{u^{2}+3^{2}} d u=\int \frac{1 / 3^{2}}{(u / 3)^{2}+1} d u
$$

Now let $v=u / 3$, then a substitution yields

$$
\int \frac{1 / 3}{v^{2}+1} d v=\frac{1}{3} \tan ^{-1} v+C=\frac{1}{3} \tan ^{-1}\left(\frac{x+1}{3}\right)+C .
$$

Alternatively, you could just recall that $\int \frac{1}{u^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{u}{a}+C$.
2b. To integrate $\int \cos ^{n} x d x$, where n is an odd integer, first write the inetegrand as $\cos ^{n-1} x \cos x$

$$
\int \cos ^{5} x d x=\int \cos ^{4} x \cos x d x
$$

Then using the formula $\cos ^{2} x=1-\sin ^{2} x$, the above becomes

$$
\int\left(1-\sin ^{2} x\right)^{2} \cos x d x=\int\left(1-2 \sin x+\sin ^{2} x\right) \cos x d x
$$

Now use the substitution $u=\sin x$, to get

$$
\begin{aligned}
\int\left(1-2 u+u^{2}\right) d u & =u-u^{2}+\frac{1}{3} u^{3}+C \\
& =\sin x-\sin ^{2} x+\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

2c. Integrate by parts: let

$$
u=\tan ^{-1} x \quad \text { and } \quad d v=d x
$$

then

$$
d u=\frac{1}{1+x^{2}} d x \quad \text { and } \quad v=x
$$

So

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x+\int \frac{x}{1+x^{2}} d x+C .
$$

The integral on the right is easily computed via the substitution $u=1+x^{2}$ to yield the final answer:

$$
x \tan ^{-1} x+\frac{1}{2} \ln \left(1+x^{2}\right) d x+C .
$$

3a. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$ is indeterminate of the form 1^{∞}, so begin by setting $y=(1+x)^{\frac{1}{x}}$ and then taking the natural \log of both sides:

$$
\ln y=\frac{1}{x} \ln (1+x) .
$$

Now take the limit of both sides as $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x} .
$$

Since the limit on the right hand side is of the form $0 / 0$, we may use the L'Hopital's rule:

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=\lim _{x \rightarrow 0} \frac{1 /(x+1)}{1}=1
$$

So $\lim _{x \rightarrow 0} \ln y=1$, but, since \ln is continuous at $1, \lim _{x \rightarrow 0} \ln y=\ln \left(\lim _{x \rightarrow 0} y\right)$. So we have

$$
\ln \left(\lim _{x \rightarrow 0} y\right)=1
$$

which yields

$$
\lim _{x \rightarrow 0} y=e^{1}=e
$$

3b. $\lim _{x \rightarrow 0}\left(x^{2} \ln x\right)$ is indeterminate of the form $0 \cdot \infty$, so we rewrite is as follows to make it susceptible to L'Hopital's rule:

$$
\lim _{x \rightarrow 0}\left(x^{2} \ln x\right)=\lim _{x \rightarrow 0} \frac{\ln x}{\frac{1}{x^{2}}} .
$$

Now the limit on the right is of the form ∞ / ∞, so we may use the L'Hopital's rule:

$$
\lim _{x \rightarrow 0} \frac{\ln x}{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^{3}}}=\lim _{x \rightarrow 0} \frac{x^{2}}{-2}=0 .
$$

4.

$$
\begin{aligned}
4.122222 \ldots & =4.1+0.02+0.002+\cdots \\
& =\frac{41}{10}+\frac{2 / 100}{1-1 / 10} \\
& =\frac{41}{10}+\frac{2}{90} \\
& =\frac{281}{90}
\end{aligned}
$$

5a.

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots=1+\sum_{n=1}^{\infty} \frac{1}{2 n}=1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}
$$

But $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series, which diverges (e.g., by the integral test). So the series on the left converges as diverges as well.

5b. Using the L'Hopital's rule we have

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n}=\lim _{n \rightarrow \infty} \frac{1}{1 / n}=\frac{1}{0}=\infty \neq 0
$$

So by the $n^{\text {th }}$-term test, a.k.a. divergence test, $\sum_{n=2}^{\infty} \frac{n}{\ln n}$ diverges.
5c. Compare $\sum_{n=1}^{\infty} \frac{n+7}{n^{2} \sqrt{n}}$ with the series $\sum_{n=1}^{\infty} \frac{n}{n^{2} \sqrt{n}}$, via the limit comparison test:

$$
\lim _{n \rightarrow \infty} \frac{\frac{n+7}{n^{2} \sqrt{n}}}{\frac{n}{n^{2} \sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{n+7}{n}=1 .
$$

So the series either both converge or both diverge. But $\frac{n}{n^{2} \sqrt{n}}=\frac{n}{n^{5 / 2}}=$ $\frac{1}{n^{3 / 2}}$, and $3 / 2>1$, so by the p-series test, the second series converges. Thus the first series converges as well.

5d.
$\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2}}{(n+1)!}}{\frac{n^{2}}{n!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} n!}{(n+1)!n^{2}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+1) n^{2}}=\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0 \leq 1$
Therefore by the absolute ratio test the series convereges.
6. The general term for the series $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots$ is x^{n} / n (for our purposes here we may safely disregard the first term).

$$
\rho(x):=\lim _{n \rightarrow \infty} \frac{\frac{x^{n+1}}{(n+1)}}{\frac{x^{n}}{n}}=\lim _{n \rightarrow \infty} \frac{x n}{n+1}=x .
$$

For the series to converge we must have $|\rho(x)|<1$ and solve for x. So in this case we simply get $|x|<1$ which yields $-1<x<1$. So the radius of convergence is 1 . Next we check the end points. If $x=1$, then out series becomes the harmonic series which diverges, but if $x=-1$ then we obtain the alternating harmonic series which converges. Thus the interval convergenc is:

$$
[-1,1) .
$$

7a. First recall that the summation formula for geometric series yields:

$$
1-x+x^{2}-x^{3}+\cdots=\frac{1}{1+x}
$$

for all $-1<x<1$. So, over this interval, we may integate both sides of the above to get:

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\ln (1+x)
$$

Since the series on the right converges for $x=1$ (which is the alternating harmonic series), and $\ln (1+x)$ is continuous at $x=1$, then, by Abel's theorem, the above formula holds for $x=1$. So we get

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln (2) .
$$

7b. The summation formula for geometric series yields:
a) Find an infinite series which converges to π (Hint: Find a power series for $\left.\tan ^{-1} x\right)$.
c) Find $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}$ (Hint: consider the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$).

Problems 2 and 5 are worth 20 points and 40 points respectively; the rest are worth 10 points each
${ }^{\mathrm{L}} \mathrm{A}_{\mathrm{E}} \mathrm{X}$ $\mathcal{M G}$

