Nov 16, 2001

Time: 60min

Math 142 Calculus II Fall 2001, USC

Midterm 3

Note: Justify all your answers.

1. Find dy/dx in one of the following:

a)
$$y = \frac{\sqrt{x+13}}{(x-4)(\sqrt[3]{2x+1})}$$
 b) $y = \tan^{-1} x$

2. Find two of the following integrals

a)
$$\int \frac{1}{x^2 + 2x + 10} dx$$
 b) $\int \cos^5 x \, dx$ **c**) $\int \tan^{-1} x \, dx$

3. Find *one* of the following limits

a)
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}}$$
 b) $\lim_{x \to 0} (x^2 \ln x)$

4. Write the following number as as the ratio of two integers.

5. Determine whether or not the following series converge.

a)
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots$$

b) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
c) $\sum_{n=1}^{\infty} \frac{n+7}{n^2\sqrt{n}}$
d) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n!}$

6. Find the convergence set of the power series

$$1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$

- 7 (Bonus). Choose one of the following problems:
- a) Find the sum of the alternating harmonic series (*Hint*: Find a power series for $\ln(x+1)$ by integrating the power series for 1/(1+x)).
- a) Find an infinite series which converges to π (*Hint*: Find a power series for $1/(1 + x^2)$ and integrate it to find a power series for $\tan^{-1} x$).
- c) Find $\lim_{n\to\infty} \frac{x^n}{n!}$ (*Hint*: consider the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$).

Problems 2 and 5 are worth 20 points and 40 points respectively; the rest are worth 10 points each