Calculus II
Fall 2001, USC

Midterm 3

Time: 60min
Note: Justify all your answers.

1. Find $d y / d x$ in one of the following:
a) $y=\frac{\sqrt{x+13}}{(x-4)(\sqrt[3]{2 x+1})}$
b) $y=\tan ^{-1} x$
2. Find two of the following integrals
a) $\int \frac{1}{x^{2}+2 x+10} d x$
b) $\int \cos ^{5} x d x$
c) $\int \tan ^{-1} x d x$
3. Find one of the following limits
a) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$
b) $\lim _{x \rightarrow 0}\left(x^{2} \ln x\right)$
4. Write the following number as as the ratio of two integers.

$$
3.1222222 \ldots
$$

5. Determine whether or not the following series converge.
a) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots$
b) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
c) $\sum_{n=1}^{\infty} \frac{n+7}{n^{2} \sqrt{n}}$
d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n!}$
6. Find the convergence set of the power series

$$
1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots
$$

7 (Bonus). Choose one of the following problems:
a) Find the sum of the alternating harmonic series (Hint: Find a power series for $\ln (x+1)$ by integrating the power series for $1 /(1+x))$.
a) Find an infinite series which converges to π (Hint: Find a power series for $1 /\left(1+x^{2}\right)$ and integrate it to find a power series for $\left.\tan ^{-1} x\right)$.
c) Find $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}$ (Hint: consider the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.

Problems 2 and 5 are worth 20 points and 40 points respectively; the rest are worth 10 points each

