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Lecture Notes 3

3 Meaning of Gaussian Curvature

In the previous lecture we gave a formal definition for Gaussian curvature
K in terms of the differential of the gauss map, and also derived explicit
formulas for K in local coordinates. In this lecture we explore the geometric
meaning of K.

3.1 A measure for local convexity

Let M C R3? be a regular embedded surface, p € M, and H, be hyperplane
passing through p which is parallel to 7, M. We say that M is locally convex
at p if there exists an open neighborhood V of p in M such that V lies on
one side of H,. In this section we prove

Theorem 3.1.1. If K(p) > 0 then M is locally convex at p, and if K(p) < 0
then M 1is not locally convex at p.

In the case where K(p) = 0, we cannot in general draw any conclusion
with regard to the local convexity of M at p as the following two exercises
demonstrate:

Exercise 3.1.2. Show that there exists a surface M and a point p € M
such that M is strictly locally convex at p; however, K(p) = 0 (Hint: Let
M be the graph of the equation z = (2% + *)2. Then M may be covered
by the Monge patch X (u',u?) := (u',v?, ((u')? + (v?)?)?). Use the Monge
Ampere equation derived in the previous lecture to compute the curvature
at X(0,0).).

Exercise 3.1.3. Let M be the monkey saddle, i.e., the graph of the equation
z =y® —3yx?, and p := (0,0,0). Show that K(p) = 0, but M is not locally
convex at p.
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After a rigid motion, we may assume that p = (0,0,0) and 7,M is the
xy-plane. Then, using the inverse function theorem, it is easy to show that
there exist a monge patch (U, X) centered at p, as the following exercise
demonstrates:

Exercise 3.1.4. Define 7: M — R? by 7(q) := (¢*,¢*,0). Show that m,,
is locally one-to-one. Then, by the inverse function theorem, it follows that
7 is a local diffeomorphism. So there exist a neighborhood U of (0,0) such
that 7=': U — M is one-to-one and smooth. Let f(u',u?) denote the 2-
coordinate of 771 (u!, u?), and set X (u',v?) := (u',v?, f(u',u?)). Show that
(U, X) is a proper regular patch.

The previous exercise shows that local convexity of M at p depends on
whether or not f changes sign in a neighborhood of the origin. To examine
this we need to recall the Taylor’s formula for function of two variables:
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where (£!,£?) is a point on the line segment between (u',u?) and (0, 0).

Exercise 3.1.5. Prove the Taylor’s formula given above (Hints: First re-
call Taylor’s formula for functions of one variable: g(t) = ¢(0) + ¢'(0)t +
(1/2)g"(s)t?, where s € [0,t]. Then define (¢) := (tul,tu?), set g(t) :=
f(y(t)), and apply Taylor’s formula to g. The chain rule will yield the de-
sired result.)

Next note that, by construction, f(0,0) = 0. Further D;f(0,0) = 0 =
D, f(0,0) as well. Thus it follows that
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Hence, to complete the proof of Theorem 3.1.1, it remains to show how the
quantity on the right hand side of the above equation is influenced by K(p).
To this end, recall the Monge-Ampere equation for curvature:

det(Hess f(£",€%) = K(f(£",€%))(v/1+ || grad f(£', €2)[1%)%.




Now note that K(f(0,0)) = K(p). Thus, by continuity, if U is a sufficiently
small neighborhood of (0, 0), the sign of det(Hess f) agrees with the sign of
K (p) throughout U.

Finally, we need some basic facts about quadratic forms. A quadratic
form is a function of two variables Q: R? — R given by

Q(z,y) := az® + 2bzy + cy?,

where a, b and ¢ are constants. @ is said to be definite if Q(z,z) # 0
whenever z # 0.

Exercise 3.1.6. Show that if ac—b? > 0, then Q is definite, and if ac —b% <
0, then @ is not definite (Hints: For the first part, suppose that = # 0, but
Q(z,y) = 0. Then az?+2bry+cy? = 0, which yields a+2b(z/y)+c(z/y)? = 0.
Thus the discriminant of this equation must be positive, which will yield a
contradiction. The proof of the second part is similar).

Theorem 3.1.1 follows from the above exercise.



