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Lecture Notes 2

2 Gaussian Curvature

The principal geometric quantity associated to surfaces in R? is that of their
Gaussian curvature which we define in this lecture.

2.1 The tangent space

Let M C R? be a regular embedded surface, as we defined in the previous
lecture, and let p € M. By the tangent space of M at p, denoted by T,M,
we mean the set of all vectors v in R? such that for each vector v there exists
a smooth curve v: (—e¢, €) = M with v(0) = p and +'(0) = v.

Exercise 2.1.1. Let H C R? be a plane. Show that, for all p € H, T,H is
the plane parallel to H which passes through the origin.

Exercise 2.1.2. Prove that, for all p € M, T,M is a 2-dimensional vector
subspace of R?® (Hint: Let (U, X) be a proper regular patch centered at p,
i.e., X(0,0) = p. Recall that dX(g) is a linear map and has rank 2. Thus it
suffices to show that T,M = dX (o) (R?)).

Exercise 2.1.3. Prove that D; X (0,0) and D, X (0,0) form a basis for T, M
(Hmt Show that DlX(O, 0) = dX(()’O)(l, 0) and DQX(O, O) = dX((),()) (0, 1))

2.2 The local gauss map

By a local gauss map of M centered at p we mean a pair (V,n) where V is
an open neighborhood of p in M and n: V — S? is a continuous mapping
such that n(p) is orthogonal to T,M for all p € M.
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Exercise 2.2.1. let (V,n) be a local gauss map of M centered at p. Show
that (V, —n) is also a local gauss map at p.

The above exercise shows that in general gauss map is not unique; how-
ever, given a local parameterization of the surface, we may define the local
gauss map in a canonical way as described in the following exercise:

Exercise 2.2.2. Show that every p € M has an open neighborhood where
the gauss map is well defined (Hint: Let (U, X) be a proper regular patch
centered at p. Define N: U — S? by

N (u1,us) == D1 X (uy, uz) X DpX (u1, up)
P IDiX (un, ug) X Do X (ug, ug)||”

Set V := X (U), and recall that, since (U, X) is proper, V is open in M. Now
define n: V — S2 by
n(p) = No X '(p).

Check that n is well-defined and is indeed the gauss map.

Exercise 2.2.3. Show that, for all p € S?, n(p) = p (Hint: Define f: R® —
R by f(p) := ||p||* and compute its gradient. Note that S? is a level set of
f. Thus the gradient of f at p must be orthogonal to S?).

2.3 Differential of a map between surfaces

Let M and N be regular embedded surfaces in R?® and f: M — N be a
smooth map (recall from the first lecture that this means that f may be
extended a smooth map in an open neighborhood of M). Then for every
p € M, we define a mapping df,: T,M — Ty, N, known as the differential
of M at p as follows. Let v € T,M and let v: (—¢,e) — M be a curve such
that v(0) = p and 7/(0) = v. Then we set

dfy(v) := (f ©7)'(0).

Exercise 2.3.1. Prove that df, is well defined and linear (Hint: Let f be
a smooth extension of f to an open neighborhood of M. Then df, is well
defined. Show that for all v € T, M, df,(v) = df,(v).



2.4 The shape operator

let (V,n) be a local gauss map centered at p € M. Then the shape operator
of M at p with respect of n is defined as

Sp == —dn,.

Note that the shape operator is determined up to two choices depending on
the local gauss map.

Exercise 2.4.1. Show that S, may be viewed as a linear operator on 7, M
(Hint: By definition, Sy, is a linear map from T, M to T,,(;)S*. Thus it suffices
to show that T, M and Ty, S? are parallel).

Exercise 2.4.2. A subset V of M is said to be connected if any pairs of
points p and ¢ in V may be joined by a curve in V. Suppose that V is
a connected open subset of M, and, furthermore, suppose that the shape
operator vanishes throughout V', i.e., for every p € M and v € T, M, S,(v) =
0. Show then that V must be flat, i.e., it is a part of a plane (Hint: It
is enough to show that the gauss map is constant on V; or, equivalently,
n(p) = n(q) for all pairs of points p and ¢ in V. Since V is connected, there
exists a curve y: [0,1] — M with v(0) = p and (1) = ¢. Furthermore, since
V' is open, we may choose 7 to be smooth as well. Define f: [0,1] - R by
f(t) :== no~(t), and differentiate. Then f'(t) = dn.)(7'(t)) = 0. Justify the
last step and conclude that n(p) = n(q).

Exercise 2.4.3. Compute the shape operator of a sphere of radius r (Hint:
Define 7: R*—{0} — S? by m(z) := z/||z||. Note that 7 is a smooth mapping
and m = n on S? . Thus, for any v € 7,52, dm,(v) = dn,(v)).

2.5 (Gaussian curvature

The Gaussian curvature of M at p is defined simply as the determinant of
the shape operator:
K(p) = det(S,).

Exercise 2.5.1. Show that K (p) does not depend on the choice of the local
gauss map, i.e, replacing n by —n does not effect the value of K(p).

Exercise 2.5.2. Compute the curvature of a sphere of radius r (Hint: Use
exercise 2.4.3).



2.6 An explicit formula in terms of local coordinates

Here we derive an explicit formula for K(p) in terms of local coordinates.
Let (U, X) be a proper regular patch centered at p. For 1 < 7,5 < 2, define
the functions g;;: U —+ R by

Ggij (Ul, UQ) = DiX(’U/l, UQ) X DjX(ul, UQ).

Note that g2 = go1. Thus the above defines three functions which are called
the coeflicients of the second fundamental form (a.k.a. the metric tensor)
with respect to the given patch (U, X). In the classical notation, these func-
tions are denoted by E, F, and G (E := ¢11, F := g12, and G := g99). Next,
define ;;: U — R by

lij (U,l, UQ) = <Dz'jX(’LL1, Ug), N(Ul, U2)>

Thus /;; is a measure of the second derivatives of X in a normal direction.
l;; are known as the coefficients of the second fundamental form of M with
respect to the local patch (U, X) (the classical notation for these functions
are L := Iy, M :=lj5, and N := ly). We claim that

_ det(1;(0,0))
~ det(g;;(0,0))

To see the above, recall that e;(p) := D; X (X '(p)) form a basis for T, M.
Thus, since S, is linear, Sy(e;) = Z?Zl Sije;. This yields that (Spy(e;), ex) =
Z?:l Sijgjk. SllppOSG that

K(p)

<Sp(ei)a ek) = lik::

see the exercise below. Then we have [l;;] = [S;;][gi;], where the symbol [-]
denotes the matrix with the given coefficients. Thus we can write [S;;| =
[9i5]7[l;;] which yields the desired result.

Exercise 2.6.1. Show that (S,(e;(p)),e;(p)) = 1;;(0,0) (Hints: note that
(n(p),ej(p)) =0forallp € V. Let y: (—€,¢) = M be a curve with y(0) =p
and 7/(0) = e(p). Define f: (—¢,&) — M by £(t) := (n(1(t)), ;(1(1))), and
compute f'(0).)



Exercise 2.6.2. Let (U, X) be a Monge patch, i.e, X (uy, ug) := (u1, ug, f(u1, us)),
centered at p € M. Show that

det(Hess f(0,0))
(1 + [l grad f(0,0)][*)*’

K(p) =

where Hess f := [D;; f] is the Hessian matrix of f and grad f is its gradient.



