Let
![[Graphics:Images/Hw3_gr_1.gif]](Images/Hw3_gr_1.gif)
By definition, the Hermite Polynomials, H_n(x), are the coefficients of the Taylor expansion of the above function around zero. Thus it is easy to obtain them:
![[Graphics:Images/Hw3_gr_2.gif]](Images/Hw3_gr_2.gif)
So the first four Hermite polynomials are:
![[Graphics:Images/Hw3_gr_4.gif]](Images/Hw3_gr_4.gif)
Let
![[Graphics:Images/Hw3_gr_5.gif]](Images/Hw3_gr_5.gif)
and define
![[Graphics:Images/Hw3_gr_6.gif]](Images/Hw3_gr_6.gif)
Now we can compute:
![[Graphics:Images/Hw3_gr_7.gif]](Images/Hw3_gr_7.gif)
So the functions Y_n(x) are in L^2(R) at least for the first few values of n. In class we will prove that Y_n(x) are in L^2(R) for every n.
Recall that the Legendre functions may be obtained by orthonormalizing the functions x^n, see the first handout. Hermite polynomials may be obtained in a similar way.
Let
![[Graphics:Images/Hw3_gr_9.gif]](Images/Hw3_gr_9.gif)
Next, load in the appropriate package
![[Graphics:Images/Hw3_gr_10.gif]](Images/Hw3_gr_10.gif)
Now we can use the Gram-Schmidt process to orthonrmalize the functions a_n(x)
![[Graphics:Images/Hw3_gr_11.gif]](Images/Hw3_gr_11.gif)
So you can decide what the relationship between these functions and H_n(x) is.
Calculating the inner products <Y_n(x),Y_m(x)> are easy. First define
![[Graphics:Images/Hw3_gr_13.gif]](Images/Hw3_gr_13.gif)
then write
![[Graphics:Images/Hw3_gr_14.gif]](Images/Hw3_gr_14.gif)
So as you can see these eigenvalues are orthogonal.